Name:	Date:
Algebra 1: Solving Systems Using All 3 Methods – Review	

Sections 7.1, 7.2, 7.3

Solve the following systems by graphing. Be sure to check your work at the end.

$$\begin{array}{ll} x + y = -2 \\ 2x - 3y = -9 \end{array}$$

				-		 -

Steps to Follow

- 1. Make sure both equations are in slope-intercept form (y = mx + b)
- Graph each line on the same coordinate plane (start at the yintercept, and move with your slope – rise over run)
- 3. Find the point of intersection
- 4. Check the coordinates of the point by plugging them back in to both equations

Slope Intercept Form (list equations):

Equation 1:

Equation 2:

Check Work:

Plug back in to equation 1:

Plug back in to equation 2:

True statement for both?

Answer:

					+	\square			+		+	+	
					1				\neg	-	-	1	
						+			+	+	+	+	-
					-	+		\vdash	+	+	-	+	+
	Check Work:												
	Dive heads in the equation 4. Dive heads in the equation						. .						
Slope Intercept Form:	Plug back in to equation 1:			PIL	ıg D	ac	KIr	1 to	eq	lua	lion	1 2:	
Equation 1:													
Equation 2:													
Equation 2:													
					Tru	ie s	stat	tem	ien	it fo	or b	oth	1?

Solve the following systems using the substitution method. Be sure to show all of your work, and to check your answer at the end.

Check Work:	
Plug back in to equation 1:	Plug back in to equation 2:
	T
	True statement for both?

6. 3x + y = 52x - y = 10

Answer:

Solve the following systems using the elimination method. Be sure to show all of your work and to check your answer at the end.

7. $3x = -6y + 12$			Steps to Follow
-x+3y=6		1.	Arrange the equations with like
			terms in columns (standard form)
		2.	Multiply one (or both) of the
Step 1: Rearrange	Step 2/3: Multiply (eliminate a variable)		equations by a number to get one
			of the variables to cancel out
			 Coefficients need to be opposites
		3.	Add the equations vertically.
			Combining like terms will eliminate one of the variables
			 Solve for the remaining variable
		4.	Plug that value back in to one of the original equations and solve for
			the other variable
Step 4: Plug back in	Check:	5.	Check your answer by plugging it
			back in to both of the original
			equations

8. 11x + 3y = 1-5x - 3y = -7

9. 3y = -5x + 15-y = -3x + 9 Solve #9-10 using the elimination method. Be sure to show all of your work, check your work, and clearly label your answer.

10. 2m - 4 = 4nm - 2 = n

Solve the following systems in your notebook. You may choose a method to solve them. For whatever method you choose, be sure to show all of your work, check your work at the end, and to clearly label your answers.

11. $x + 2y = 5$	12. $3x + y = 5$	13. $x - 2y = 0$
5x - y = 3	-x + y = -7	3x - y = 0
14. $x + 7y = 12$	15. $-12x + y = 15$	16. $4x + 3y = 31$
3x - 5y = 10	3x + 2y = 3	y = 2x + 7